The concomitant increase in skeletal muscle mass (SMM) and decrease in fat mass has been termed body recomposition. This study aimed to analyze the influence of pre-training levels of fat mass on body recomposition, muscular strength, and (phase angle) PhA after 24weeks of resistance training (RT) in older women. Data from 99 older women (68.6 ± 5.7years, 65.7 ± 8.6kg, 155.1 ± 5.8cm, 27.2 ± 3.1kg/m2) was retrospectively analyzed. Participants were separated into tertiles according to the amount of fat mass at baseline as follows: low fat mass (L-FM, n = 33), moderate fat mass (M-FM, n = 33), and high fat mass (H-FM, n = 33). The participants underwent a RT program consisting of eight exercises, three sets per exercise, with a load between 8 and 15 RM, performed three times per week for 24weeks. The SMM and fat mass were evaluated by dual-energy X-ray absorptiometry (DXA). Body recomposition was determined by the composite Z-score of changes in SMM and fat mass. One repetition maximum (1RM) tests in chest press, knee extension, and preacher curl were assessed to verify muscular strength. Bioimpedance was used to determine phase angle. Results indicated that after the RT period, a greater positive body recomposition was observed in the L-FM group than in M-FM and H-FM groups. Moreover, all groups increased muscular strength and phase angle with no significant difference among groups (P > 0.05). The present study results suggest that the initial amount of fat mass influences the body recomposition induced by RT in older women, with those with lower pre-training fat mass levels presenting higher levels of body recomposition. However, improvements in muscular strength and phase angle are not dependent on the amount of initial fat mass in older women.
Read full abstract