A group of chalcogenopheno[3,2-b]pyrroles, including thieno[3,2-b]pyrrole (TP), furo[3,2-b]pyrrole (FP), and selenopheno[3,2-b]pyrrole (SeP), and thieno[3,2-b]thiophene (TT) electron-donating units were coupled with a thiophene-flanked diketopyrrolo[3,4-c]pyrrole (ThDPP) acceptor to generate four donor-acceptor-donor (D-A-D) semiconducting small molecules (ThDPP-TT, ThDPP-FP, ThDPP-TP, and ThDPP-SeP). This study systematically investigated the differences between chalcogenopheno[3,2-b]pyrroles and TT. From the characterizations, chalcogenopheno[3,2-b]pyrrole-containing molecules showed lower band gaps and binding-energy cold crystallization behavior. The enthalpies of cold crystallization were correlated with the weight of the chalcogen in ThDPP-FP, ThDPP-TP, and ThDPP-SeP, which were evaluated as intermolecular chalcogen-bond interactions between chalcogen and pyrrole nitrogen in chalcogenopheno[3,2-b]pyrroles. A stronger chalcogen bond interaction resulted in stronger self-aggregation in thin films with thermal treatment, which resulted in a polycrystalline structure in chalcogenopheno[3,2-b]pyrrole-containing molecules. For the application in an organic field-effect transistor, all four molecules showed good performance with the highest hole mobilities as 6.33 × 10-3 cm2 V-1 s-1 for ThDPP-TT, 2.08 × 10-2 cm2 V-1 s-1 for ThDPP-FP, 1.87 × 10-2 cm2 V-1 s-1 for ThDPP-TP, and 6.32 × 10-3 cm2 V-1 s-1 for ThDPP-SeP, and the change of mobility is well correlated to the root-mean-square roughness of the thin films. Overall, all the chalcogenopheno[3,2-b]pyrrole-containing molecules showed lower band gaps, polymorphism, and better charge transport properties compared to TT-containing molecules, which motivates replacing TT with chalcogenopheno[3,2-b]pyrroles in conjugated polymers, non-fullerene small molecular acceptors, and narrow-band-gap donors.