Slim Buttes is a 30 km long by 10 km wide set of buttes containing Paleogene strata in northwest South Dakota. At Reva Gap in northern Slim Buttes, Eocene-Oligocene terrestrial strata of Chadron and Brule Formations of the White River Group unconformably overlie the Paleocene Fort Union Formation. An angular unconformity separates the White River Group from overlying Oligocene and Miocene strata of the Arikaree Group. Using detrital zircon U-Pb ages, we determine the provenance of these rocks as part of a broader synthesis of post-Laramide sedimentation in the Rocky Mountains and western Great Plains. The Chadron Formation age spectrum is dominated by Cretaceous and Proterozoic grains that are interpreted to be locally recycled from the underlying Cretaceous and Paleocene strata. The Brule Formation has a maximum depositional age of ~34 Ma; Paleogene zircons dominate the age spectrum, and a wide variety of older zircons are also present. The Oligocene zircons are interpreted to have been sourced from volcanic systems in the Great Basin to the southwest, while the subsequent proportions of the zircons were derived from a variety of source areas in the Nevadaplano and Rocky Mountain areas to the southwest. Sparse amounts of Archean zircons are thought to represent the burial of Laramide uplifts throughout Wyoming at the time of Brule deposition, making for a regional paleotopography with little relief across the western interior of the United States. The Miocene-age Arikaree Group sand has a maximum depositional age of ~26 Ma and a multimodal detrital zircon age spectrum. The Arikaree Group provenance likely represents continued sourcing in the Great Basin volcanic systems and Nevadaplano, the beginnings of the re-exhumation of Laramide basement uplifts, and subsequent sediment evacuation out of the western interior and into the Gulf of Mexico to the southeast. Our findings indicate that the transport process and detrital zircon provenance signatures of these strata are decoupled, and each have their own independent evolution. The volcanic signature is primarily transported via aeolian processes (i.e. volcanic ash), and the recycled detrital zircon signature is primarily transported via fluvial processes.