The incorporation of isolated Sn (IV) and Zr (IV) ions into silica frameworks is attracting widespread attention, which exhibits remarkable catalytic performance (conversion, selectivity, and stability) in a broad range of reactions, especially in the field of biomass catalytic conversion. As a representative example, the conversion route of carbohydrates into valuable platform and commodity chemicals such as lactic acid and alkyl lactates, has already been established. The zeotype materials also possess water-tolerant ability and are capable to be served as promising heterogeneous catalysts for aqueous reactions. Therefore, dozens of Sn- and Zr-containing silica materials with various channel systems have been prepared successfully in the past decades, containing 8 membered rings (MR) small pore CHA zeolite, 10-MR medium pore zeolites (FER, MCM-56, MEL, MFI, MWW), 12-MR large pore zeolites (Beta, BEC, FAU, MOR, MSE, MTW), and 14-MR extra-large pore UTL zeolite. This review about Sn- and Zr-containing metallosilicate materials focuses on their synthesis strategy, catalytic applications for diverse reactions, and the effect of zeolite characteristics on their catalytic performances.
Read full abstract