Investigating the mechanism behind the high-efficiency deposition of high-quality diamond has always been a prominent topic in related research. This paper investigates the CH4-H2 plasma characteristics and related chemical reaction kinetics in the average power density range of 18–100 W·cm−3, which is a typical range for large-area diamond film deposition. The number densities of H, CH3 and C2H2 increase linearly with the average power density. C2H2 is the main hydrocarbon in the discharge, and CH3 is the main single-carbon hydrocarbon. The number density and radial uniformity of CH3 and C2H2 increase with the average power density, which is necessary for the high rate and uniform deposition of diamond films. The plasma's optical emission spectra indicate an acceleration in the C2 production rate at high power density. The diamond film deposition experiment demonstrates the efficacy of high average power density in achieving high-quality diamond deposition at a high growth rate.