The CH4 storage and seepage capacity of shale kerogen are the main controlling factors of the natural gas production rate, and the porosity and permeability of kerogen are greatly affected by kerogen deformation. Therefore, the study of the deformation rule and CH4 adsorption characteristics of kerogen at different maturities and skeleton moisture contents has an important impact on the proper understanding of the development potential of shale gas reservoirs. In this paper, kerogen maturity (II-A, II-B, II-C, and II-D) and skeleton moisture content (0.0, 0.6, 1.2, 1.8, and 2.4 wt %) were considered. The deformation of kerogen, the adsorption of CH4 after deformation, and the quadratic deformation induced by CH4 were studied by using Grand Canonical Monte Carlo (GCMC) and molecular dynamics (MD). The results show that the kerogen volume strain increases with increasing skeleton moisture content, following the order II-A < II-B < II-C < II-D for the same moisture content. The density of the kerogen matrix decreases, and porosity increases with rising moisture content. The void fraction of immature kerogen decreases with increasing water content, while the opposite is true for postmature kerogen. The presence of skeleton moisture decreases the CH4 adsorption capacity of immature kerogen and increases the CH4 adsorption capacity of postmature kerogen. The chemical structure of immature kerogen is relatively soft, making its volume more affected by CH4 adsorption compared with postmature kerogen. In the same water environment, postmature kerogen has greater CH4 storage, diffusion, and seepage capacity compared to those of immature kerogen, suggesting that reservoirs with high organic matter maturity should be prioritized for development.