With the rising demand for entry to extremely high altitudes (HAs), rapid adaptability to extremely hypoxic environments is a challenge that we need to explore. Fasting was used to evaluate acute hypoxia tolerance at HA and was proven to be an effective method for improving the survival rate at extreme HA. Our experiments also showed that fasting pretreatment for 72 h significantly increased the 24 h survival rate of rats at 7620 m from 10 to 85% and protected the myocardium cells of rats. Here, we compared the metabolites and gene expression in the myocardium of SD rats pretreated with fasting and nonfasting at normal altitude and extreme HA. Our findings demonstrated that the dynamic contents of detected differential metabolites (DMs) between different rat groups were consistent with the expression of differentially expressed genes (DEGs), and DM clusters also showed strong correlations with DEG clusters. DM clusters related to amino acids and lipids were significantly lower in the fasting groups, and the correlated DEG clusters were enriched in mitotic pathways, including CDK1, CDC7, NUF2, and MCM6, suggesting that fasting can attenuate mitotic processes in cardiac tissues and reduce the synthesis of amino acids and lipids. L-Glutamine-related metabolites were particularly low at extreme HA without pretreatment but were normal in the fasting groups. The DEGs in the cluster related to L-glutamine-related metabolites were enriched for T-cell receptor V(D)J recombination, the Hippo signaling pathway, the Wnt signaling pathway, the cGMP-PKG signaling pathway, and the mTOR signaling pathway and were significantly downregulated, indicating that the content of L-glutamine decreased at extreme HA, while fasting increased it to adapt to the environment. Moreover, abundant fatty acids were detected when rats were exposed to extreme HA without pretreatment. Our study revealed the fasting and hypoxic environment-related factors in SD rats and provided new insights into the genetic and molecular characteristics in the myocardium, which is critical to developing more potential rapid adaptation methods to extreme HA.