In the yeast Saccharomyces cerevisiae, pre-mRNA 3'-end processing requires six factors: cleavage factor IA (CF IA), cleavage factor IB (CF IB), cleavage factor II (CF II), polyadenylation factor I (PF I), poly(A) polymerase (Pap1p) and poly(A)-binding protein I (Pab1p). We report the characterization of Pfs2p, a WD-repeat protein previously identified in a multiprotein complex carrying PF I-Pap1p activity. The 3'-end-processing defects of pfs2 mutant strains and the results of immunodepletion and immunoinactivation experiments indicate an essential function for Pfs2p in cleavage and polyadenylation. With a one-step affinity purification method that exploits protein A-tagged Pfs2p, we showed that this protein is part of a CF II-PF I complex. Pull-down experiments with GST fusion proteins revealed direct interactions of Pfs2p with subunits of CF II-PF I and CF IA. These results show that Pfs2p plays an essential role in 3'-end formation by bridging different processing factors and thereby promoting the assembly of the processing complex.
Read full abstract