The surfactant template-directed solvothermal method was applied in the synthesis of hierarchical mesoporous zinc-imidazolate derivative metal–organic framework (mesoMOF), which was then utilized for active loading of cisplatin (cis-Pt). To fabricate mesoMOF, various amounts of the surfactant (cetyltrimethylammonium bromide: 0.1–0.3 g) and linker (citric acid: 0.05–0.15 g) were added to the reaction mixture, which resulted in different particle sizes and morphologies. MesoMOF quality attributes such as Specific surface area (SSA), total porous volume, and Barrett-Joyner-Halenda (BJH) pore diameter were also determined. At the optimum reaction condition, mesoMOF with a high surface area (1859 m2/g), pore diameter (14.13 nm) and total pore volume (0.314 cm3/g) was attained. In the next step, cis-Pt was actively loaded in the mesoMOF with a high loading capacity (28% w/w), which was remarkably superior to the microporous MOF. Interestingly, in mildly acidic pH (5.5), mesoMOF underwent degradation, resulting in a rapid release of cis-Pt. Cell viability and apoptosis induction assays confirmed the superiority of the cis-Pt loaded mesoMOF over free drug in a resistant ovarian tumor cell line (A2780cp). Altogether, due to their tunable size and morphology, pH-responsiveness, and acceptable tolerability in mice, the mesoMOFs can be regarded as an anti-cancer drug delivery system.
Read full abstract