Here we investigate the effect of lithium iodide and cetyltrimethylammonium (CTA) bromide additives on the ability of LiMo(3)Se(3) nanowire film sensors to bind and detect organic solvents electrically. Both additives decrease the electrical conductivity of the films. Lithium iodide increases the response of the films to both polar and nonpolar analytes. CTA increases the response of the films to nonpolar analytes but reduces the response to polar analytes. Quartz crystal microbalance measurements show that the modified electrical sensitivities of the films are due to altered analyte adsorption abilities of the films. These results show that the Li(+) ions are involved in analyte binding in native LiMo(3)Se(3) films and that a programming of LiMo(3)Se(3) nanowire film sensors is possible by replacing lithium cations with other receptors.
Read full abstract