Silica nanoparticles (SiNPs) could induce adverse pulmonary effects, but the mechanism was not clear enough. Metabolomics is a sensitive and high-throughput approach that could investigate the intrinsic causes of adverse health effects caused by SiNPs. The current investigation represented the first in vivo metabolomics study examining the chronic pulmonary toxicity of SiNPs at a low dosage, mimicking real human exposure situation. The recovery process after the cessation of exposure was also taken into consideration. Fisher 344 rats were treated with either saline or SiNPs for 6 months. Half of the animals in each group received an additional six-month period for recovery. The findings indicated that chronic low-level exposure to SiNPs resulted in notable alterations in pulmonary metabolism of amino acids, lipids, carbohydrates, and nucleotides. SiNPs exerted an impact on various metabolites and metabolic pathways which are linked to oxidative stress, inflammation and tumorigenesis. These included but were not limited to L-carnitine, spermidine, taurine, xanthine, and glutathione metabolism. The metabolic alterations caused by SiNPs exhibited a degree of reversibility. However, the interference of SiNPs on two metabolic pathways related to tumorigenesis was observed to persist after a recovery period. The two metabolic pathways are glycerophospholipid metabolism as well as phenylalanine, tyrosine and tryptophan biosynthesis. This study elucidated the metabolic alterations induced by chronic low-level exposure to SiNPs and presented novel evidence of the chronic pulmonary toxicity and carcinogenicity of SiNPs, from a metabolomic perspective.
Read full abstract