Photothermal therapy, in which a laser is an effective tool, is a promising method for cancer treatment. Laser parameters, including power, irradiation time, type of laser radiation (continuous or chopped), and the concentration of the photothermal agent, can affect the efficiency of this method. Therefore, this study investigated and compared the effects of different laser parameters on the efficiency of photothermal treatment for cervical cancer, which is the fourth most prevalent cancer in women. In addition, we investigated the properties of graphene oxide (GO) synthesized as a photothermal agent under laser radiation, and its effectiveness in achieving the desired therapeutic temperature. This study examined and compared the effects of temperature, nanoparticle concentration, irradiation time, and laser power to understand their impact on heat transfer. The toxicity of graphene oxide at different concentrations in HeLa cancer cells was also evaluated. These results demonstrated low toxicity, particularly after 24h, with approximately 10% toxicity. The study explored mortality under laser irradiation at various powers and time intervals using continuous and chopped beam irradiation. In addition, a model for temperature prediction using a regression tree was presented. Finally, the combined photothermal effects of graphene oxide and laser irradiation were investigated. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test results reveal significant effects, with a mortality rate of 90% in continuous radiation with a concentration of 0.3mg/ml and 75% in chopped beam irradiation with concentrations of 0.3 and 0.4mg/ml. A regression tree model was developed to predict temperature changes based on the GO concentration, laser power, and irradiation time, providing valuable insights for optimizing photothermal therapy parameters. Statistical analysis showed that the combined effect of graphene oxide with continuous laser irradiation was more effective than chopped-beam laser irradiation. However, the chopped-beam irradiation method is expected to cause less damage to surrounding tissues. These findings indicate that photothermal therapy with graphene oxide, chopped, and continuous laser irradiation can potently treat HeLa cancer cells and pave the way for further exploration of targeted cancer treatments.
Read full abstract