The cellular and synaptic organization of the eye of the nudibranch mollusk Hermissenda is well-documented. The five photoreceptors within each eye are mutally inhibitory and can be classified into two types: A and B based on electrophysiological and anatomical criteria. Two of the three type B and two type A photoreceptors can be further identified according to their medial or lateral positions within each eye. In addition to reciprocal synaptic connections between photoreceptors, photoreceptors also project to second-order neurons in the cerebropleural ganglion. The second-order neurons receive convergent synaptic input from two additional sensory pathways; however, it has not been previously established if lateral A, lateral B, or medial B photoreceptors converge onto the same second-order neurons. To determine the specific synaptic organization of these components of the visual system, we have examined monosynaptic connections between identified lateral and medial type A and B photoreceptors and second-order cerebropleural (CP) interneurons. We found that monosynaptic connections between identified lateral A and lateral and medial B photoreceptors and CP interneurons follow a labeled-line principle. Illumination of the eyes or extrinsic depolarizing current applied to identified photoreceptors evoked excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs, respectively) in different CP interneurons. The PSPs in CP interneurons followed one-for-one spikes in the photoreceptors and could be elicited in artificial seawater solutions containing high divalent cations. Identified photoreceptors projected to more than one CP interneuron and expressed both excitatory and inhibitory connections with the different CP interneurons. In examples where a monosynaptic connection between a lateral B photoreceptor and a CP interneuron was identified, lateral A, medial A, or medial B photoreceptors did not project to the same CP interneuron. Moreover, when connections between medial B and CP interneurons were identified, lateral A, medial A, and lateral B connections were not found to project to the same CP interneuron. Similar results were obtained for a lateral A and CP interneuron connection. These results indicate that divergent labeled-lines exist between specific photoreceptors and second-order CP interneurons and potential convergence of synaptic input from primary and secondary elements of the visual system must occur at sites that are postsynaptic to the CP interneurons.
Read full abstract