Although chemokines have been implicated in cardiovascular diseases, few studies have addressed the role of these inflammatory mediators in ischemic stroke. This study tested the hypothesis that RANTES (CCL5; regulated on activation, normal T-cell expressed and secreted) mediates the cerebral microvascular dysfunction, inflammation, and tissue injury induced by brain ischemia and reperfusion. After 60-minute middle cerebral artery occlusion and reperfusion, the adhesion of leukocytes and platelets in cerebral venules, infarct volume, and blood-brain barrier permeability were measured in wild-type mice (WT), RANTES-deficient mice (RANTES(-/-)), WT mice transplanted with RANTES(-/-) bone marrow (RANTES>WT), and control bone marrow chimeras (WT>WT). The concentration of RANTES and several cytokines was also measured by enzyme-linked immunosorbent assay and a cytometric bead array. The enhanced leukocyte and platelet adhesion, increased blood-brain barrier permeability, and tissue infarction elicited in WT and WT>WT mice after middle cerebral artery occlusion and reperfusion were significantly blunted in RANTES(-/-) mice. Similar attenuation of the middle cerebral artery occlusion and reperfusion-induced responses were noted in RANTES>WT chimeras. Although RANTES deficiency did not alter the changes in tissue cytokine levels elicited by middle cerebral artery occlusion and reperfusion, plasma concentrations interleukin-6, interleukin-10, and interleukin-12 were all reduced. These findings implicate blood cell-derived RANTES in the microvascular, inflammatory, and tissue injury responses of the brain to ischemia and reperfusion.
Read full abstract