Adaptive behavior in complex environments requires integrating visual perception with memory of our spatial environment. Recent work has implicated three brain areas in posterior cerebral cortex - the place memory areas (PMAs) that are anterior to the three visual scene perception areas (SPAs) - in this function. However, PMAs' relationship to the broader cortical hierarchy remains unclear due to limited group-level characterization. Here, we examined the PMA and SPA locations across three fMRI datasets (44 participants, 29 female). SPAs were identified using a standard visual localizer where participants viewed scenes versus faces. PMAs were identified by contrasting activity when participants recalled personally familiar places versus familiar faces (Datasets 1-2) or places versus multiple categories (familiar faces, bodies, and objects, and famous faces; Dataset 3). Across datasets, the PMAs were located anterior to the SPAs on the ventral and lateral cortical surfaces. The anterior displacement between PMAs and SPAs was highly reproducible. Compared to public atlases, the PMAs fell at the boundary between externally-oriented networks (dorsal attention) and internally-oriented networks (default mode). Additionally, while SPAs overlapped with retinotopic maps, the PMAs were consistently located anterior to mapped visual cortex. These results establish the anatomical position of the PMAs at inflection points along the cortical hierarchy between unimodal sensory and transmodal, apical regions, which informs broader theories of how the brain integrates perception and memory for scenes. We have released probabilistic parcels of these regions to facilitate future research into their roles in spatial cognition.
Read full abstract