To evaluate the utility of easy Z-score imaging system (eZIS) in 27 diffuse axonal injury (DAI) cases. Twenty-seven DAI patients were examined with an magnetic resonance imaging (MRI) T2* sequence and with eZIS (seven women, 20 men; age range, 19-35 years; median age: 26.6 years). In this investigation, we excluded patients who exhibited complications such as acute subdural hematoma, acute epidural hematoma, intracerebral hematoma, or brain contusion. We examined the neuropsychological tests and correlated with findings from MRI/eZIS. Furthermore, we evaluated the degree of ventricular enlargement in the bifrontal cerebroventricular index (CVI). Patients were divided into two groups: the enlargement group (bifrontal CVI > 35%, 12 patients) and the non-enlargement group (bifrontal CVI < 35%, 15 patients). All of the patients showed cognitive deficits as observed from the neuropsychological test results. Fifteen out of 27 patients by MRI T1/T2 weighted images and fluid attenuated inversion recovery (FLAIR), 22 out of 27 patients by MRI T2* weighted images and 24 out of 27 patients by eZIS showed abnormal findings. In MRI T2* weighted imaging, the white matter from the frontal lobe, corpus callosum, and brainstem showed abnormal findings. With eZIS, 22 patients (81.5%) showed blood flow degradation in the frontal lobe, and 12 patients (44.4%) in cingulate gyrus. In the enlargement group, Functional Independence Measure, Mini-Mental State Examination, Verbal IQ (VIQ)/Full Scale IQ (FIQ), Trail Making Test-B (TMT-B), and Non-paired of Miyake Paired Test were significantly lower. Amongst 12 patients without ventricular enlargement who had no abnormal findings in MRI T1/T2 weighted images and FLAIR, abnormal findings were detectable in seven patients with MRI T2* weighted imaging and to 10 patients with eZIS. Results of the MRI examination alone cannot fully explain DAI frontal lobe dysfunction. However, addition of the eZIS-assisted analysis derived from the single photon emission computed tomography (SPECT) data enabled us to understand regions where blood flow was decreased, i.e., where neuronal functions conceivably might be reduced.
Read full abstract