The clinical category of immune-mediated cerebellar ataxias (IMCAs) is now recognized after 3 decades of clinical and experimental research. The cerebellum gathers about 60% of neurons in the brain, is enriched in numerous plasticity mechanisms, and presents a large variety of antigens at the neuroglial level: ion channels and related proteins, synaptic adhesion/organizing proteins, transmitter receptors, and glial cells. Cerebellar circuitry is especially vulnerable to immune attacks. After the loss of immune tolerance, IMCAs present in an acute or subacute manner with various combinations of a vestibulocerebellar syndrome (VCS), a cerebellar motor syndrome (CMS), and a cerebellar cognitive affective syndrome/Schmahmann's syndrome (CCAS/SS). IMCAs include gluten ataxia (GA), post-infectious cerebellitis (PIC), Miller Fisher syndrome (MFS), paraneoplastic cerebellar degeneration (PCD), opsoclonus myoclonus syndrome (OMS), anti-glutamic acid decarboxylase (anti-GAD) ataxia, and glial fibrillary acidic protein (GFAP) astrocytopathy (GFAP-A). In addition, multiple sclerosis (MS), acute disseminated encephalomyelitis (ADEM), Behçet disease, and collagen-vascular disorders may also present with cerebellar symptoms when lesions involve cerebellar afferences/efferences. Patients whose clinical profiles do not fit with IMCAs are now gathered in the group of primary autoimmune cerebellar ataxias (PACAs). Latent auto-immune cerebellar ataxia (LACA) refers to a clinical stage with a slow progressive course and a lack of obvious auto-immune background. At a pre-symptomatic stage, patients remain asymptomatic, whereas at the prodromal stage aspecific symptoms occur, announcing the symptomatic neuronal loss. LACA corresponds to a time-window where an intervention could lead to preservation of plasticity mechanisms. Patients may evolve from LACA to PACA and typical IMCAs, highlighting a continuum. Immune ataxias represent a model to elucidate the sequence of events leading to destruction of cerebellar neuronal reserve and develop novel strategies aiming to restore plasticity mechanisms.
Read full abstract