Abstract

Cerebellar circuitry is topographically arranged in closed loops with the cerebral cortex. The three cornerstones of clinical ataxia have emerged from studies on connectional anatomy and from clinical/neuropsychological observations, leading to the definition of clinical syndromes encountered in daily practice: (a) the cerebellar motor syndrome (CMS), (b) the vestibulocerebellar syndrome (VCS), and (c) the cerebellar cognitive affective syndrome/Schmahmann syndrome (CCAS/SS). These syndromes are either isolated or coexist, depending on the underlying pathological process and its degree of extension within the cerebellum. Dysmetria is the core feature of cerebellar deficits, encompassing motor dysmetria (hypermetria, hypometria) in CMS, oculomotor dysmetria in VCS, and dysmetria of thought in CCAS/SS. The leading hypothesis is that dysmetria results from errors in building or maintaining internal models, which are inherent to predictive behavior. Errors in prediction would lead to clumsiness and incoordination of limbs, oculomotor impairments, and aberrant cognitive/affective behavior. The cerebellum is currently viewed as a learning machine enriched with multiple plasticity mechanisms, allowing the permanent adaptation to the external world by generating and maintaining predictive operations, from motor to cognitive, affective, emotional, and social operations essential for daily human life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.