Scavenger receptor class B type I (SR-BI) is primarily known for its role in the selective uptake of cholesteryl esters (CEs) from high-density lipoproteins (HDLs). Here we investigated whether SR-BI deficiency is associated with other potentially relevant changes in the plasma lipidome than the established effect of HDL-cholesterol elevation. Targeted ultra-high-performance liquid chromatography-tandem mass spectrometry was utilized to measure lipid species in plasma from female wild-type and SR-BI knockout mice. SR-BI deficiency was associated with a reduction in the average CE fatty acid length (-2%; p<0.001) and degree of CE fatty acid unsaturation (-18%; p<0.001) due to a relative shift from longer, polyunsaturated CE species CE (20:4), CE (20:5), and CE (22:6) towards the mono-unsaturated CE (18:1) species. Sphingomyelin (SM) levels were 64% higher (p<0.001) in SR-BI knockout mice without a parallel change in (lyso)phosphatidylcholine (LPC) concentrations, resulting in an increase in the SM/LPC ratio from 0.102±0.005 to 0.163±0.003 (p<0.001). In addition, lower LPC lengths (-5%; p<0.05) and fatty acid unsaturation degrees (-20%; p<0.01) were detected in SR-BI knockout mice. Furthermore, SR-BI deficiency was associated with a 4.7-fold increase (p<0.001) in total plasma ceramide (Cer) levels, with a marked >9-fold rise (p<0.001) in Cer (d18:1/24:1) concentrations. We have shown that SR-BI deficiency in mice not only impacts the CE concentrations, length, and saturation index within the plasma compartment, but is also associated with plasma accumulation of several Cer and SM species that may contribute to the development of specific hematological and metabolic (disease) phenotypes previously detected in SR-BI knockout mice.
Read full abstract