The structural, electrical, and magnetic properties of lithium zinc ferrite prepared by ceramic technology have been studied. The composition of lithium zinc ferrite is Li0.4Fe2.4Zn0.2O4 with 1 and 2 wt % bismuth oxide. The addition of Bi2O3 prior to sintering of the samples has been shown to affect the structural, electrical, and magnetic properties of the ferrite. A significant increase in density from 4.47 to 4.65 g/cm3 and a decrease in porosity from 4.8 to 2.3% have been observed when the concentration of bismuth oxide has been increased to 2 wt %. The Bi2O3-containing samples have higher specific electrical resistivity compared to that of the additive-free lithium zinc ferrite. The introduction of bismuth oxide has reduced the specific saturation magnetization from 70.55 to 54.76 G cm3/g. The Curie temperature has not changed significantly. An optimal combination of macroscopic properties of ferrite has been found at 1 wt % Bi2O3 concentration.