Abstract

Lead-boron special glass was doped into Ba0.996La0.004Ti0.999O3 (BLT4) ceramics in order to control the sintering process and grain growth, consequently obtaining materials with a well-developed microstructure. Changes in the microstructure resulted in a significant decrease in electrical permittivity along with a substantial increase in its frequency dispersion. Glass-doped ceramics, similar to pure BLT4, are characterized by a first-order phase transition from the ferroelectric phase to the paraelectric phase. The temperature of this transition shifts slightly towards higher values with the increase in glass dopant concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.