The exigent requirements for personal protections in terms of energy absorption and ergonomics have led to increasing interest in bioinspired protections. This work focuses on the numerical analysis of ballistic behavior of different bioinspired geometries under impact loadings. Ceramic armors based on ganoid fish scales (the type exhibited by gars, bichirs and reedfishes), placoid fish scales (characterizing sharks and rays) and armadillo natural protection have been considered. Different impact conditions are studied, including perpendicular and oblique impacts to surface protection, different yaw angle, and multiple impacts. Main conclusion is related to the improved efficiency of modular armors against multiple shots exhibiting more localized damage and crack arrest properties. Moreover, its potential ergonomic is a promising characteristic justifying a deeper study.