In the biomonitoring of human genotoxic effects, micronuclei (MN) usually are scored in phytohaemagglutinin-stimulated cultured lymphocytes. MN also can be examined in uncultured lymphocytes, which facilitates the analysis of genotoxic damage incurred in vivo. Characterization of MN in cultured lymphocytes by fluorescence in situ hybridization (FISH) has shown a clear over-representation of the X and Y chromosomes in the MN of males. However, it is not known if this phenomenon also occurs in vivo. The purpose of the present study was to assess the frequency and composition of MN formed in vivo from immunomagnetically isolated uncultured T-lymphocytes of men. To evaluate the possible effects of genotoxic exposure on in vivo MN, we examined 17 railroad workers occupationally exposed to complex chemical mixtures and 14 referents, all nonsmokers. The results showed similar total frequencies of micronucleated cells among the exposed workers and the referents. When the MN were characterized by FISH, there were no significant differences between the exposed and referents with regards to the frequency of centromere-positive or centromere-negative MN. Centromeric label was observed in 69% of all MN, indicating that most of the MN contained whole chromosomes (or chromatids). 80% of the centromere-positive MN harbored autosomes, 12% Y chromosomes, and 8% X chromosomes. The occurrence of the Y- and X-chromosomes in MN was, respectively, 5.5- and 3.8-times greater than would be expected assuming an equal contribution by all chromosomes. Thus, sex chromosomes appear to be over-represented in lymphocyte MN of men in vivo, confirming previous results obtained in vitro.