Primary cilia are cell surface sensory organelles, whose dysfunction underlies various human genetic diseases collectively termed ciliopathies. A new study in The EMBO Journal by Villumsen et al now reveals how stress–response pathways converge to stimulate ciliogenesis by modulating protein composition of centriolar satellites. Better understanding of these mechanisms should bring us closer to identifying the cellular defects that underlie ciliopathies caused by mutations in centriolar satellite proteins. Centrioles are barrel‐shaped structures with two distinct identities. In proliferating cells centrioles provide structural support for the centrosome, a key microtubule‐organizing centre, whereas in quiescent cells centrioles are converted into basal bodies and promote the assembly of primary cilia. In centrosomes, centrioles are embedded in pericentriolar material (PCM), a dynamic structure responsible for microtubule nucleation. PCM proteins exhibit cell cycle‐dependent localisation, achieved at least in part by the regulation of their transport. Centriolar satellites, dense fibrous granules frequently clustered around the interphase centrosome, have been implicated in microtubule‐dependent protein transport to centrosomes (Kubo et al, 1999). In particular, PCM‐1, the core constituent of centriolar satellites, is required for centrosomal accumulation of several PCM components (Dammermann and Merdes, 2002). Although the proteomic composition of satellites is still elusive, the growing list of satellite proteins includes CEP131/AZI1 (Staples et al, 2012), CEP290 (Stowe et al, 2012), Bardet‐Biedl syndrome protein 4 (BBS4) and Oral facial digital syndrome protein (OFD1; Lopes et al, 2011). Mutations in OFD1, CEP290 and BBS4 cause ciliopathies (Kim et al, 2008), underscoring a functional link between satellites and ciliogenesis. So far, two roles have been proposed for satellites in cilia formation: …
Read full abstract