ABSTRACT Centrifuge tests were performed to study the dynamic properties of shallow soil with locally raised bedrock (i.e. variable soil depth). The test parameter was the slope of bedrock: 0° (S0), 35° (S35), and 45° (S45). In each test, accelerations were measured along the soil depth, and the results of acceleration, displacement, Fourier transform, and response spectrum were compared. Based on the results, the transfer function (TF), the ratio of response spectrum (RRS), and the site period were estimated. The ground motion and site period of specimens with raised bedrock were smaller than those of the specimen without raised bedrock (i.e. with deeper soil). Further, parametric studies using 2-dimensional finite element (FE) analysis were performed to investigate the effect of design parameters on the response of shallow soil with variable soil depths. For design parameters, the length of raised bedrock and the length of foundation slab were considered. Parametric study results indicated that when the shallow soil region is wide, the results are similar to those of a 1-dimensional soil column. However, when the shallow soil region is narrow, the 2-dimensional response is smaller than the 1-dimensional soil column response. This was also observed in the actual site model.
Read full abstract