The ecological success of diatoms, key contributors to photosynthesis, is partly based on their ability to perfectly balance efficient light harvesting and photoprotection. Diatoms contain higher numbers of antenna proteins than vascular plants for light harvesting and for photoprotection. These proteins are arranged in fucoxanthin-chlorophyll protein (FCP) complexes. The number of FCP complexes, their subunit composition, and their interactions in the thylakoid membranes remain elusive in different diatoms. We used the recently available genome sequence of the centric diatom Cyclotella cryptica to analyze gene sequences for putative light-harvesting proteins in C. meneghiniana, and to elucidate the FCP complex composition. We analyzed two pools of FCP complexes that were trimeric (FCPa) and nonameric (FCPb). FCPa was composed of four different trimeric subtypes. Two different nonameric FCPb complexes were present. All were distinguished by their polypeptide composition and partly by pigmentation. With use of a milder purification method, two fractions composed of different FCP complexes were isolated. One was enriched in FCPs incorporating the photoprotective subunit Lhcx1, such as the newly identified nonameric FCPb2 and the major trimeric FCPa4 complex, which are predetermined to be involved in energy-dependent nonphotochemical quenching. The other fraction contained mainly FCPs that were devoid of Lhcx1, FCPa3, and FCPb1. Both fractions also included small amounts of trimeric FCPa complexes with the centric diatom-specific Lhcx protein, Lhcx6_1, as subunit. Thus, the antenna organization of centric diatoms, as well as the distribution of different photoprotective Lhcx proteins, differs from that of other diatoms, as well as from plants.