The changes in the intermediary metabolism of plant cells were quantified according to growth conditions at three different stages of the growth cycle of tomato cell suspension. Eighteen fluxes of central metabolism were calculated from (13)C enrichments after near steady-state labeling by a metabolic model similar to that described in Dieuaide-Noubhani et al. (Dieuaide-Noubhani, M., Raffard, G., Canioni, P., Pradet, A., and Raymond, P. (1995) J. Biol. Chem. 270, 13147-13159), and 10 net fluxes were obtained directly from end-product accumulation rates. The absolute flux values of central metabolic pathways gradually slowed down with the decrease of glucose influx into the cells. However, the relative fluxes of glycolysis, the pentose-P pathway, and the tricarboxylic acid cycle remained unchanged during the culture cycle at 70, 28, and 40% of glucose influx, respectively, and the futile cycle of sucrose remained high at about 6-fold the glucose influx, independently from carbon nutritional conditions. This natural resistance to flux alterations is referred to as metabolic stability. The numerous anabolic pathways, including starch synthesis, hexose accumulation, biosynthesis of wall polysaccharides, and amino and organic acid biosynthesis were comparatively low and variable. The phosphoenolpyruvate carboxylase flux decreased 5-fold in absolute terms and 2-fold in relation to the glucose influx rate during the culture cycle. We conclude that anabolic fluxes constitute the flexible part of plant cell metabolism that can fluctuate in relation to cell demands for growth.