Let {X_{n}, ngeq1} be a strictly stationary negatively associated sequence of positive random variables with mathrm{E}X_{1}=mu>0 and operatorname{Var}(X_{1})=sigma^{2}<infty. Denote S_{n}=sum_{i=1}^{n}X_{i}, p_{k}=mathrm{P}(a_{k}leq ({prod}_{j=1}^{k}S_{j}/(k!mu^{k}) )^{1/(gammasigma_{1} sqrt{k})}< b_{k}) and gamma=sigma/mu the coefficient of variation. Under some suitable conditions, we derive the almost sure local central limit theorem \t\t\tlimn→∞1logn∑k=1n1kpkI{ak≤(∏j=1kSjk!μk)1/(γσ1k)<bk}=1a.s.,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\lim_{n\\rightarrow\\infty}\\frac{1}{\\log n}\\sum_{k=1}^{n} \\frac{1}{kp_{k}}\\mathrm{I} \\biggl\\{ a_{k}\\leq \\biggl(\\frac {\\prod_{j=1}^{k}S_{j}}{k!\\mu^{k}} \\biggr)^{1/(\\gamma\\sigma_{1} \\sqrt {k})}< b_{k} \\biggr\\} =1 \\quad\\mbox{a.s.,} $$\\end{document} where sigma_{1}^{2}=1+frac{1}{sigma^{2}}sum_{j=2}^{infty}operatorname{Cov}(X_{1},X_{j})>0.
Read full abstract