Abstract

We prove the Central Limit Theorem for products of i.i.d. random matrices. The main aim is to find the dimension of the corresponding Gaussian law. It turns out that ifG is the Zariski closure of a group generated by the support of the distribution of our matrices, and ifG is semi-simple, then the dimension of the Gaussian law is equal to the dimension of the diagonal part of Cartan decomposition ofG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.