Regular inspection of urban drainage pipes can effectively maintain the reliable operation of the drainage system and the production safety of residents. Aiming at the shortcomings of the CCTV inspection method used in the drainage pipe defect detection task, a PDS-YOLO algorithm that can be deployed in the pipe defect detection system is proposed to overcome the problems of inefficiency of manual inspection and the possibility of errors and omissions. First, the C2f-PCN module was introduced to decrease the model sophistication and decrease the model weight file size. Second, to enhance the model’s capability in detecting pipe defect edges, we incorporate the SPDSC structure within the neck network. Introducing a hybrid local channel MLCA attention mechanism and Wise-IoU loss function based on a dynamic focusing mechanism, the model improves the precision of segmentation without adding extra computational cost, and enhances the extraction and expression of pipeline defect features in the model. The experimental outcomes indicate that the mAP, F1-score, precision, and recall of the PDS-YOLO algorithm are improved by 3.4%, 4%, 4.8%, and 4.0%, respectively, compared to the original algorithm. Additionally, the model achieves a reduction in both the model’s parameter and GFLOPs by 8.6% and 12.3%, respectively. It saves computational resources while improving the detection accuracy, and provides a more lightweight model for the defect detection system with tight computing power. Finally, the PDS-YOLOv8n model is deployed to the NVIDIA Jetson Nano, the central console of the mobile embedded system, and the weight files are optimized using TensorRT. The test results show that the velocity of the model’s inference capabilities in the embedded device is improved from 5.4 FPS to 19.3 FPS, which can basically satisfy the requirements of real-time pipeline defect detection assignments in mobile scenarios.
Read full abstract