Using the analytic Bethe ansatz, we initiate a study of the scaling limit of the quasi-periodic D32\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {D}_3^{(2)} $$\\end{document} spin chain. Supported by a detailed symmetry analysis, we determine the effective scaling dimensions of a large class of states in the parameter regime γ ∈ (0,π4\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\frac{\\pi }{4} $$\\end{document}). Besides two compact degrees of freedom, we identify two independent continuous components in the finite-size spectrum. The influence of large twist angles on the latter reveals also the presence of discrete states. This allows for a conjecture on the central charge of the conformal field theory describing the scaling limit of the lattice model.
Read full abstract