Phylogeographical patterns provide valuable insight into the historical processes underlying diversification, and may provide a better understanding of biodiversity, dispersal modes, diversification times, extinctions, refuge areas and other species-/population-level processes. Here, we examine the genetic structure of Oxalis laciniata, a representative of Oxalis, which is an important emerging model in evolutionary biology and phylogenetic studies. We analyse genetic correlation, haplotype diversity and genetic structure. In this study, cpDNA reveals the presence of 16 haplotypes, connected in tree networks. Genetic diversity is high and polymorphism is low among populations based on ISSR markers. Both clustering and analysis of the structure of the population indicate two different groups. Distribution modelling predicts two potential distribution areas. Our main conclusions are: (i) The phylogeographical pattern demonstrates non-random organization of genetic variability since two distinct groups can be distinguished; (ii) two refugia are proposed: one is situated in the SE, holding the most ancestral haplotypes; and the second one is situated in the SW; (iii) we propose an in situ diversification hypothesis for the populations located in the steppe; (iv) the centre of diversification coincides with the centre of the distribution; (v) distribution modelling shows a strong correspondence with the distribution of the species but it also suggests the possibility of occurrence in the Central Andes.