The motion of centre of mass (CoM) is a fundamental object of investigation in biomechanical analysis. In principle, the CoM motion can either be calculated from force data (dynamic method) or motion capture data (kinematic method). In both approaches, the accuracy of the calculated trajectories depends on the quality of the original signals. Interestingly, the inaccuracies in each method are related to different parts of the Fourier spectrum. Here, we present a new approach to compute CoM motion based on the reliable frequency range of force and kinematic measurements. As a result we obtain physically consistent CoM and force signals, i.e. the second derivative of the CoM trajectory equals the force. The algorithm is verified on simulation data and applied to selected experimental data. We show that the new algorithm can eliminate typical inaccuracies inherent in kinematic and force signals. Also, we discuss the biological and technical origins of these findings.