The Gudong area contains abundant petroleum resources. Previous studies have mainly focused on the extension structure in this area, with its strike-slip characteristics remaining poorly understood. In this study, the geometry of the strike-slip faults in the Gudong area was investigated using high-resolution 3D seismic reflection and drilling data, as were their associated releasing and restraining structures. Based on the profile’s flower structure and the plane’s horsetail splay pattern, the Gudong fault in the study area can be characterized as a dextral strike-slip. Three types of strike-slip fault-associated structures can be identified in the study area: (a) a restraining bend occurring in the right-stepping area of the S-shaped Gudong strike-slip fault, (b) a restraining bend identified in the left-stepping, overlapping zone of the Gudong and Kendong faults, and (c) a releasing bend seen in the extensional horsetail splay structure at the southern end of the Gudong fault. The restraining stress induced the formation of a fault-related open anticline, which led to a significant increase in fault sealing efficiency, thereby preserving an estimated 75.479231 million tons of oil and 15.28317145 billion cubic meters of gas. Conversely, releasing transtensional stress has compromised the effectiveness of the traps, preventing hydrocarbon retention. Consequently, oil and gas have migrated upward along the horsetail faults to the top of Cenozoic formations and have then dispersed.
Read full abstract