The present work is a comparative study of sand mortars from various geological origins to highlight their influence on mortar qualities. Five different sands and the cement CEM II/B–P 42.5R were used to produce mortars with similar water/cement ratios (W/C). These are the “Sanaga” sand from the Sanaga River, the “Wouri” sand from the Wouri River, the Nyambaka basalt sand, the Meiganga granite sand, and the Leboudi gneiss sand. The physical, chemical, and mineralogical features of these sands were used to characterize and classify them. They were then used to formulate mortars, which were analyzed and compared. According to the results of the mortar setting time tests, the initial setting time ranges from 195 minutes for Sanaga sand mortar (MS04) to 210 minutes for gneiss sand mortar (MGN03), passing Wouri sand mortar (MW05) with 200 minutes, basalt sand mortar (MB01) with 198 minutes, and granite sand mortar (MGR02) with 196 minutes. The final setting time ranged from 496 minutes (MGR02) to 510 minutes (MGN03), with an average of 300 minutes added to the initial setting time. The flexural strength tests of the mortars reveal that crushed sands outperform alluvial sands. They range from 1.64 to 2.18 MPa after 2 days, 3 to 3.90 MPa after 7 days, and 7 to 14.84 MPa after 28 days. The results of the compressive strength tests show that quarry sand mortars have greater average compressive strengths than alluvial sand mortars, with basalt sand providing the greatest performance. These strengths range from 6.35 to 10.83 MPa after 2 days, 7.55 to 18.96 MPa after 7 days, and 22.81 to 34.58 MPa after 28 days, with the MB01 being the best sand. These findings reveal that the geological origin of sands, which specifies certain of their physicochemical and mineralogical attributes, has an impact on the properties of mortars. This impact is also influenced by granulometry and organic matter concentration.