Biodegradability, biocompatibility, abundant supply from renewable sources, and affordability are the outstanding properties of cellulose that have prompted substantial studies into its potential in biomedical applications. Beyond terrestrial sources of cellulose, seaweeds have attracted much attention as a potential source of cellulose because they are widely available. Cellulose and its byproducts may be extracted from various macroalgae species, including red, green, and brown algae. The extracted cellulose's qualities vary depending on the algae species, age, and extraction process utilized. Cellulose's characteristics are enhanced through chemical modifications, specifically etherification and esterification, which substitute functional groups for hydroxyl groups, yielding a range of products, including cellulose acetate (CA), cellulose nitrate, cellulose sulfate, methylcellulose, and carboxymethyl cellulose (CMC). The ability to modify CMC characteristics for particular applications is explored through techniques including grafting processes mixing, and cross-linking with other polymers. Moreover, tissue engineering is given significant consideration in the growing use of CMC and its altered forms in biological applications. These alterations allow for the production of scaffolds that promote tissue regeneration and cell proliferation, enabling CMC-based scaffolds for various tissue engineering uses. This review provides a comprehensive overview of CMC's properties, modifications, and potential in tissue engineering.