Abstract
High effective low-cost substance derived from agriculture-based waste towards a circular economy concept showed a significant green approach for pharmaceuticals uptake in aqueous solution. Beachwood sawdust was used as the source of cellulose based adsorbents. Cellulose is isolated from the waste and in parallel magnetite nanoparticles are prepared by the simple co-precipitation technique and the two substances are mixed in various proportions to be acetaminophen adsorbent. Characteristics of the prepared magnetite (M)/sawdust (SD) composite in various proportions (M:SD (1:1), M:SD (1:2), M:SD (1:3), M:SD (1:5) and M:SD (2:1) were assessed using scanning electron microscope (SEM) transmission electron microscope (TEM) and X-ray diffractometer (XRD) which revealed the presence magnetite and cellulose. Also, for the object of recoverable adsorbent, vibrating sample magnetometer (VSM) of the adsorbent is investigated to evaluate its sustainability. The highest removal rate was associated with M:SD (1:2) compared to the other composites and the pristine magnetite or sawdust materials within 2 hours of isotherm time. The adsorption parameters are optimized and the maximal yield is attained at pH (7.0), adsorbent dose of 2.0 g/L at room temperature. The adsorption matrix is following Langmuir model and fitted to the second-order kinetic model. The process is exothermic in nature and highlighted physisorption tendency. The highest monolayer adsorption uptake was investigated at 7.0 mg/g which corresponds to the M:SD (1:2) adsorbent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.