In this study, a simple and novel microdialysis sampling technique incorporating hollow fiber liquid phase microextraction (HF-LPME) coupled online to high-performance liquid chromatography (HPLC) for the one-step sample pretreatment and direct determination of alachlor (2-chloro-2',6'-diethyl-N -(methoxymethyl)acetanilide) and its metabolite 2,6-diethylaniline (2,6-DEA) in microbial culture medium has been developed. A reversed-phase C-18 column was utilized to separate alachlor and 2,6-DEA from other species using an acetonitrile/water mixture (1:1) containing 0.1 M phosphate buffer solution at pH 7.0 as the mobile phase. Detection was carried out with a UV detector operated at 210 nm. Parameters that influenced the enrichment efficiency of online HF-LPME sampling, including the length of the hollow fiber, the perfusion solvent and its flow rate, the pH, and the salt added in sample solution, as well as chromatographic conditions were thoroughly optimized. Under optimal conditions, excellent enrichment efficiency was achieved by the microdialysis of a sample solution (pH 7.0) using hexane as perfusate at the flow rate of 4 μL/min. Detection limits were 72 and 14 ng/mL for alachlor and 2,6-DEA, respectively. The enrichment factors were 403 and 386 (RSD < 5%) for alachlor and 2,6-DEA, respectively, when extraction was performed by using a 40 cm regenerated cellulose hollow fiber and hexane as perfusion solvent at the flow rate of 0.1 μL/min. The proposed method provides a sensitive, flexible, fast, and eco-friendly procedure to enrich and determine alachlor and its metabolite (2,6-DEA) in microbial culture medium.
Read full abstract