Fungal cellulolytic enzymes are carbohydrate active enzymes (CAzymes) essential for the deconstruction of the plant cell wall. Cellulolytic activity is described in some glycoside hydrolases (GH-cellulases) and in auxiliary activities (AA-cellulases) families. Across environments, these enzymes are mostly produced by some fungi and some bacteria. Cellulolytic fungi secrete these enzymes to deconstruct polysaccharides into simple and easy to metabolize oligo- and mono-saccharides. The fungal ability to degrade cellulose result from their repertoire of CAZymes-encoding genes targeting many substrates (e.g., xylan, arabinose). Over the past decade, the increased number of sequenced fungal genomes allowed the sequence-based identification of many new CAZyme-encoding genes. Together, the predicted cellulolytic enzymes constitute the fungal potential for cellulose deconstruction. As not all fungi have the same genetic makeup, identifying the potential for cellulose deconstruction across different lineages can help identify the various fungal strategies to access and degrade cellulose (conserved vs. variable genomic features) and highlight the evolution of cellulase-encoding genes. Here, the potential for cellulose deconstruction identified across publicly accessible, and published, fungal genomes is discussed.