Despite the importance of the aberrant polymerization of Aβ in the early pathogenic cascade of Alzheimer's disease, little is known about the induction of Aβ aggregation in vivo. Here we show that induction of cerebral β-amyloidosis can be achieved in many different brain areas of APP23 transgenic mice through the injection of dilute Aβ-containing brain extracts. Once the amyloidogenic process has been exogenously induced, the nature of the induced Aβ-deposition is determined by the brain region of the host. Because these observations are reminiscent of a prion-like mechanism, we then investigated whether cerebral β-amyloidosis also can be induced by peripheral and systemic inoculations or by the intracerebral implantation of stainless steel wires previously coated with minute amounts of Aβ-containing brain extract. Results reveal that oral, intravenous, intraocular, and intranasal inoculations yielded no detectable induction of cerebral β-amyloidosis in APP23 transgenic mice. In contrast, transmission of cerebral β-amyloidosis through the Aβ-contaminated steel wires was demonstrated. Notably, plasma sterilization, but not boiling of the wires before implantation, prevented the induction of β-amyloidosis. Our results suggest that minute amounts of Aβ-containing brain material in direct contact with the CNS can induce cerebral β-amyloidosis, but that systemic cellular mechanisms of prion uptake and transport to the CNS may not apply to Aβ.