Short-chain fatty acids, such as butyrate, play pivotal roles in various physiological processes within the human body. Recent advances in understanding cell death pathways, specifically ferroptosis, have unveiled unique opportunities for therapeutic development. Ferroptosis is linked to iron accumulation and oxidative stress, whereas butyrate has emerged as a cellular protector against oxidative stress, potentially inhibiting ferroptosis. Hydrogen peroxide (H2 O2 ) is a key player in oxidative stress, and its monitoring has gained significance in disease mechanisms. We present an innovative fluorescent probe, HOP, capable of dynamically tracking intracellular H2 O2 levels, enabling spatial and temporal visualization. The probe exhibits high accuracy (limit of detection = 0.14 μM) and sensitivity, paving the way for disease diagnosis and treatment innovations. Importantly, HOP displayed minimal toxicity, making it suitable for cellular applications. Cellular imaging experiments demonstrated its ability to penetrate cells and monitor intracellular H2 O2 levels accurately. The HOP probe confirmed H2 O2 as a critical marker in ferroptosis. Our innovative HOP provides a powerful tool for tracking intracellular H2 O2 levels and offers insights into the modulation of ferroptosis, potentially opening new avenues for disease research and therapeutic interventions.
Read full abstract