Extruded polystyrene (XPS) is frequently used in the construction of many different structures. Therefore, it is necessary to appropriately characterize its mechanical properties to ensure the safety of said structures. Among the available characterization tests, static bending tests are simple and easy to perform; owing to these characteristics, they should be performed more frequently than other tests. In static bending tests on XPS, there are several challenges owing to the high flexibility of XPS, and the chosen testing method and sample configuration affect the accuracy of characterization. For cellular plastics, including XPS, three-point bending (TPB) test methods are standardized by the International Organization for Standardization (ISO) and Japanese Industrial Standards (JIS) as in ISO 1209-2:2007 and JIS K 7221-2:2006, respectively, where the sample configurations are determined. Therefore, TPB tests of cellular plastics have been conventionally performed based on these standardized methods to characterize the bending properties. In contrast, investigations on the effects of testing methods and sample configurations have often been neglected due to the existence of these standardized methods. However, to characterize the bending properties of XPS accurately, the effects of the testing method and sample configuration must be examined in detail. In this study, three bending properties (Young's modulus, proportional limit stress, and bending strength) of samples cut from an XPS panel were determined using three-point bending (TPB), four-point bending (FPB), and compression bending (CB) tests with varying sample span/depth ratios from 5 to 50 at intervals of 5, and statistical analyses were performed to determine the relevance of the tests. The effect of sample configuration on Young's modulus could be reduced when the span/depth ratio range was 25-50, 25-50, and 15-50 in the TPB, FPB, and CB tests, respectively, whereas that on the proportional limit stress was reduced in the span/depth ratio range of 5-50, 20-50, and 15-50 in the TPB, FPB, and CB tests, respectively. Additionally, the effect on the bending strength was reduced when the span/depth ratio range was 5-50, 20-50, and 5-50 in the TPB, FPB, and CB tests, respectively. Therefore, these results suggest that the TPB and CB tests were more feasible than the FPB test when the span/depth ratio was determined as being 25-50 and 15-50, respectively. However, clear differences were observed in the sample bending properties determined in these tests. In light of these findings, further studies should be conducted to elucidate these differences.
Read full abstract