The modulation of tumor microenvironments through immune checkpoint pathways is pivotal for the development of effective cancer immunotherapies. This study aims to explore the role of HVEM in non-small cell lung cancer (NSCLC) microenvironment. The lung cancer datasets for this study were directly downloaded from The Cancer Genome Atlas (TCGA). Single-cell data were sourced from the Tumor Immune Single-cell Hub (TISCH). Multiplex immunohistochemistry (mIHC) was used to explore the cellular composition and spatial distribution of HVEM in lung cancer immune microenvironment. Theimmunemicroenvironmentof HVEM KO mice bearing mouse lung cancer cell was also evaluated. Co-cultured system and phenotype assays facilitated the examination of Jurkat T cells' effect on A549 and H1299 lung cancer cells. Quantitative PCR and Western blotting determined gene and protein expression, respectively, cellular respiration was measured through oxygen consumption rate (OCR) assays. Lung cancer cells co-cultured with Jurkat T cells were xenografted into nude mice to evaluate tumor growth and metastatic potential. Next, RNA-seq, COIP, Dual-luciferasereporter experiment, and CHIP-seq were used to explore the potential underlying mechanism. In our study, we investigated the role of HVEM in the microenvironment of NSCLC and its implications in immunotherapy. Crucially, HVEM, part of the tumor necrosis factor receptor superfamily, influences T cell activation, potentially impacting immunotherapeutic outcomes. Using the TIDE algorithm, our results showcased a link between HVEM levels and immune dysfunction in NSCLC patients. Delving deeper into the NSCLC microenvironment, we found HVEM predominantly expressed in T cell subpopulations. CD8 + HVEM + and CD4 + HVEM + indicated better prognosis in lung adenocarcinoma tissue microarray using multiplex immunohistochemistry. Activated T cells, particularly from the Jurkat cell line, significantly inhibited NSCLC progression, reducing both proliferation and invasion capabilities of A549 and H1299 lung cancer cell lines. In vivo models reinforced these observations. Manipulating HVEM expression revealed its essential role in T cell survival and activation. In addition, animal experiments revealed the importance of HVEM in maintaining activated peripheral immunity and inflamed local tumor microenvironment. Furthermore, our data suggest that HVEM is pivotal in T cell metabolic reprogramming, transitioning from oxidative phosphorylation to aerobic glycolysis. RNA sequencing illuminated a potential relationship between HVEM and GPT2, an enzyme tied to amino acid metabolism and cellular energetics. Subsequent experiments confirmed that HVEM's influence on T cell activation and metabolism is potentially mediated through its regulation of GPT2. In addition, GATA1 was validated to regulate HVEM expression in activated Jurkat T cells. Our study establishes that HVEM significantly influences T cell functionality and NSCLC cell dynamics, pinpointing the HVEM-GPT2 axis as a promising target for NSCLC therapy.
Read full abstract