Pancreatic cancer (PC) responds weakly to conventional immunotherapy. RNA N6-methyladenosine (m6A) modification has an essential role in the immune response, while its potential role in PC tumor microenvironment (TME) immune cell infiltration remains unknown. In this study, we thoroughly assessed the m6A modification patterns of 472 PC samples using 19 m6A regulators, and we systematically correlated these modification patterns with TME immune cell infiltration characteristics. We also created the m6Ascore and evaluated the m6A modification patterns of individual tumors, identified three different m6A modification patterns, and explored the role of the important m6A “writer” RBM15 in the regulation of macrophage function in PC. Two independent PC cohorts confirmed that patients with higher m6Ascore showed significant survival benefit. We verified that knockdown of RBM15 has the ability to inhibit PC growth and to promote macrophage infiltration and enhance phagocytosis of PC cells by macrophages. In conclusion, m6A modifications play a non-negligible role in the formation of TME diversity and complexity in PC. We reveal that inhibition of RBM15 suppresses PC development and modulates macrophage phagocytosis, and provide a more effective immunotherapeutic strategy for PC.