Even in antiretroviral therapy (ART)-suppressed human immunodeficiency virus (HIV)-infected individuals, there are heterogeneous populations of HIV-expressing cells exhibiting variable degrees of progression through blocks to HIV transcriptional initiation, elongation, completion, and splicing. These HIV-transcribing cells likely contribute to HIV-associated immune activation and inflammation as well as the viral rebound that occurs after stopping ART. However, it is unclear whether the blocks to HIV transcription are present before ART and how the timing and duration of ART may affect the clearance of cells expressing HIV transcripts that differ in their processivity and/or presence of mutations. To investigate these questions, we quantified different types of HIV transcripts and the corresponding HIV DNA regions/proviruses in longitudinal blood samples obtained before ART initiation (T1) and after 6 months (T2) and 1 year (T3) of ART in 16 individuals who initiated ART during acute HIV infection. Before ART, the pattern of HIV transcripts suggested blocks to elongation and splicing, and only ~10% of intact proviruses were transcribing intact HIV RNA. During the first 6 months of ART, we detected progressively greater reductions in initiated, 5'-elongated, mid-transcribed, completed, and multiply spliced HIV transcripts. Completed HIV RNA decayed faster than initiated or 5'-elongated HIV RNA, and intact HIV RNA tended to decay faster than defective HIV RNA. HIV DNA and RNA levels at T1-T3 correlated inversely with baseline CD4+ T-cell counts. Our findings suggest the existence of immune responses that act selectively to reduce HIV transcriptional completion and/or preferentially kill cells making completed or intact HIV RNA.IMPORTANCEEven in virologically suppressed HIV-infected individuals, expression of viral products from both intact and defective proviruses may contribute to HIV-associated immune activation and inflammation, which are thought to underlie the organ damage that persists despite suppressive ART. We investigated how the timing of ART initiation and the duration of ART affect the heterogeneous populations of HIV-transcribing cells, including a detailed characterization of the different HIV transcripts produced before ART and the rate at which they decay after ART initiation during acute HIV infection. Even during untreated infection, most cells (~90%) have blocks at some stage of transcription. Furthermore, different HIV transcripts decline at different rates on ART, with the fastest decay of cells making completed and intact HIV RNA. Our results suggest that intrinsic or extrinsic immune responses act selectively to either reduce particular stages of HIV transcription or cause selective killing of cells making particular HIV transcripts.
Read full abstract