Electrocatalytic nitrate reduction is a crucial process for sustainable ammonia production. However, to maximize ammonia yield efficiency, this technology inevitably operates at the potentials more negative than 0 V vs. RHE, leading to high energy consumption and competitive hydrogen evolution.To eradicate this issue, hydrogen tungsten bronze (HxWO3) as reversible hydrogen donor-acceptor is partnered with copper (Cu) to enable a relay mechanism at potentials positive than 0 V vs. RHE, which involves rapid intercalation of H into HxWO3 lattice, prompt de-intercalation of the lattice H and transfer onto Cu, and spontaneous H-mediated nitrate-to-ammonia conversion on Cu.The resulting catalysts demonstrated a high ammonia yield rate of 3332.9±34.1 mmol gcat-1 h-1 and a Faraday efficiency of ~100 % at 0.10 V vs. RHE, displaying a record-low estimated energy consumption of 17.6 kWh kgammonia-1. Using these catalysts, we achieve continuous ammonia production in an enlarged flow cell at a real energy consumption of 17.0 kWh kgammonia-1.
Read full abstract