A defining feature of adaptive immunity is the development of long-lived memory T cells to curtail infection. Recent studies have identified a unique stem-like T cell subset in exhausted CD8+ T cells in chronic infection1–3, but it remains unclear whether CD4+ T cell subsets with similar features exist in chronic inflammatory conditions. Among helper T cells, TH17 cells play prominent roles in autoimmunity and tissue inflammation and are characterized by inherent plasticity4–7, although the regulation of plasticity is poorly understood. Here we demonstrate that TH17 cells in autoimmune disease are functionally and metabolically heterogeneous and contain a subset with stemness-associated features but lower anabolic metabolism, and a reciprocal subset with higher metabolic activity that supports the transdifferentiation into TH1 cells. These two TH17 cell subsets are defined by selective expression of transcription factors TCF-1 and T-bet, and discrete CD27 expression levels. Moreover, we identify mTORC1 signaling as a central regulator to orchestrate TH17 cell fates by coordinating metabolic and transcriptional programs. TH17 cells with disrupted mTORC1 or anabolic metabolism fail to induce autoimmune neuroinflammation or develop into TH1-like cells, but instead upregulate TCF-1 expression and activity and acquire stemness-associated features. Single cell RNA-sequencing and experimental validation reveal heterogeneity in fate-mapped TH17 cells, and a developmental arrest in the TH1 transdifferentiation trajectory upon mTORC1 deletion or metabolic perturbation. Our results establish that the dichotomy of stemness and effector function underlies the heterogeneous TH17 responses and autoimmune pathogenesis, and point to previously unappreciated metabolic control of helper T cell plasticity.
Read full abstract