The bed nucleus of stria terminalis (BST) is a critical structure that mediates sustained vigilant responses to contextual, diffuse, and unpredictable threats. Dysfunction of the BST could lead to excessive anxiety and hypervigilance, which are often observed in posttraumatic stress disorder and anxiety disorders. Vigilance of potential future threats from the external environment is a basic brain function and probably requires rapid and/or short neural circuits, which enable both quick detection of the potential threats and fast adaptive responses. However, the BST in literature does not appear to receive spatial information directly from earlier visual or spatial processing structures. In this study, a novel subdivision of the BST is uncovered in monkey, rat, and mouse brains based on the human equivalent and is found in mouse to receive direct inputs from the ventral lateral geniculate nucleus and pretectal nucleus as well as from the spatial processing structures such as subiculum, presubiculum, and medial entorhinal cortex. This new subdivision, termed spindle-shaped small cell subdivision (BSTsc), is located between the known BST and the anterior thalamus. In addition to the unique afferent connections and cell morphology, the BSTsc also displays unique molecular signature (e.g., positive for excitatory markers) compared with other BST subdivisions, which are mostly composed of inhibitory GABAergic neurons. The BSTsc appears to have largely overlapping efferent projections with other BST subdivisions such as the projections to the amygdala, hypothalamus, nucleus accumbens, septum, and brainstem. Together, the present study suggests that the BSTsc is poised to serve as a shortcut bridge directly linking spatial information from the environment to vigilant adaptive internal responses.
Read full abstract