Development of radiation medical countermeasures under the U.S. Food and Drug Administration Animal Rule requires the capability to translate an effective animal-to-human drug dose. One method of human dose translation is using a biomarker and determining drug doses that modulate the biomarker to the desired level. BIO 300 Oral Powder (BIO 300) is a prophylactic radiation medical countermeasure that is currently being developed following the Animal Rule. The present study aimed to identify biomarkers that can be used for human dose conversion by conducting transcriptomics of whole blood collected from BIO 300-treated CD2F1 mice in the presence and absence of total-body irradiation (TBI). Unirradiated mice were treated with vehicle or 50, 100, or 200 mg/kg BIO 300, and irradiated mice were treated with 200 mg/kg or BIO 300 or vehicle prior to TBI. Whole-blood samples were collected after the last dose of the drug and after irradiation. RNA sequencing demonstrated 100 and 200 mg/kg of BIO 300 doses caused significantly more differential gene expression at 48 h after drug dose compared to 50 mg/kg of BIO 300 (7648, 7680, and 55 significantly differently expressed genes, respectively). Interestingly, following TBI, there were no significantly differentially expressed genes between vehicle- and BIO 300-treated mice. Despite the lack of significant changes in gene expression, the transcriptomic profiles in both groups indicated differential changes in signaling pathways. Pathway analysis of the transcriptome profile from vehicle-treated/TBI mice revealed that many inflammatory signaling pathways were activated in these animals. Signaling pathways enriched in BIO 300-treated/TBI mice were involved in cellular stress and immune response and were predicted to be inhibited. In all, four signaling pathways of interest were identified that were differentially enriched in irradiated animals treated with BIO 300: pathogen-induced cytokine storm signaling, S100 family signaling, pulmonary fibrosis idiopathic signaling, and wound-healing signaling. These pathways should be explored to identify potential biomarkers of BIO 300 that can be used for human dose translation.