Aspirin (ASA) is one of the most used medications worldwide and has shown various effects on cellular processes, including stem cell differentiation. However, the effect of ASA on adipogenesis of adipose tissue-derived stem cells (ASCs) remains largely unknown. Considering the potential application of ASCs in regenerative medicine and cell-based therapies, this study investigates the effects of ASA on adipogenic differentiation in human ASCs. ASCs were exposed to varying concentrations of ASA (0 µM, 400 µM, and 1000 µM) and evaluated for changes in morphology, migration, and adipogenic differentiation. While ASA exposure did not affect self-renewal potential, migration ability, or cell morphology, it significantly reduced lipid vacuole formation at 1000 µM after 21 days of adipogenic differentiation (p = 0.0025). This visible inhibition correlated with decreased expression of adipogenic markers (PPARG, ADIPOQ, and FABP4) and the proliferation marker MKi67 under ASA exposure in comparison to the control (ns). Overall, the findings demonstrate that ASA inhibits adipogenic differentiation of human ASCs in a dose-dependent manner in vitro, contrasting its known role in promoting osteogenic differentiation. This research highlights ASA's complex effects on ASCs and emphasizes the need for further investigation into its mechanisms and potential therapeutic applications in obesity and metabolic diseases. The inhibitory effects of ASA on adipogenesis should be considered in cell-based therapies using ASCs.
Read full abstract